Rothamsted Research where knowledge grows

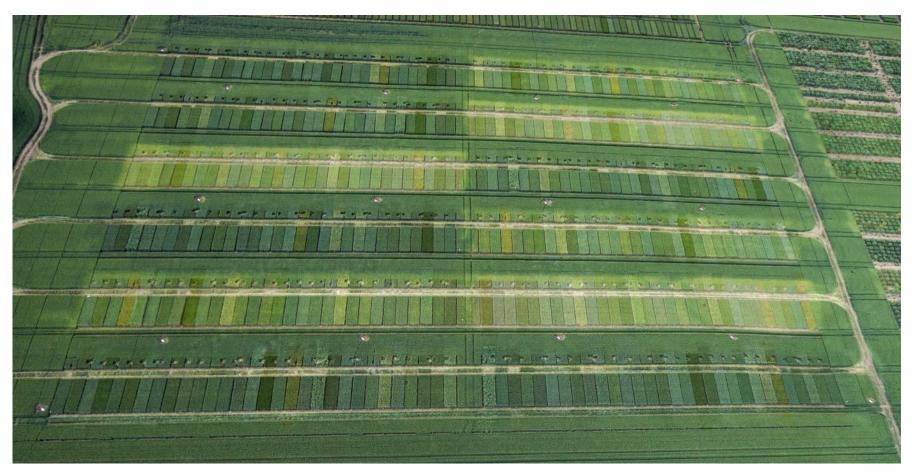
WGIN 3

Update on mineral nutrient interactions

Malcolm J. Hawkesford

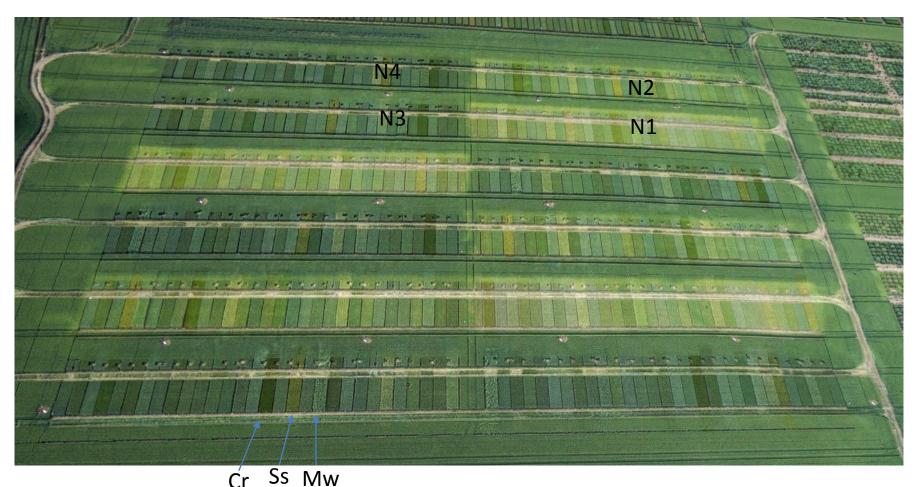
5th Management Meeting 7th July 2016

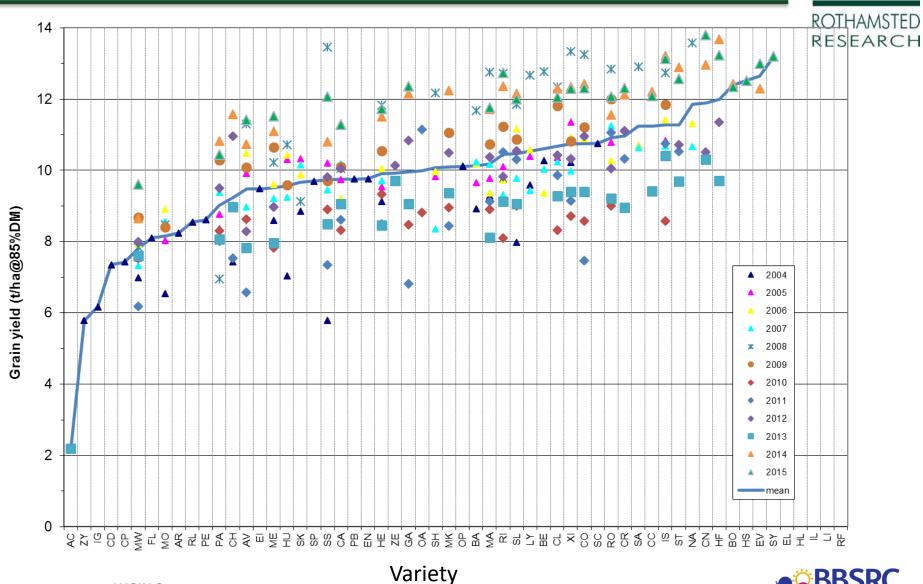
Wheat Genetic Improvement Network



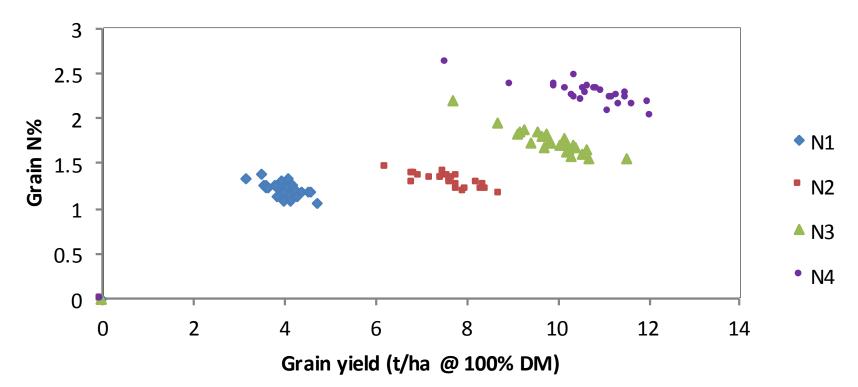
- The existing dataset includes yield, nitrogen use efficiency (NUE) and associated crop development data. In the next two years this data set will be extended, and the whole dataset analysed finally with respect to **stability and resilience** of these key agronomic traits, drawing on meteorological data from the Rothamsted site
- In 2015 and 2016, **post anthesis uptake of nitrogen and minerals** will be evaluated (mineral composition will be determined by ICP atomic absorption spectroscopic analysis to provide data on a wide range of minerals including P, S, K, Ca, Mg, Fe and Zn).
- Archive WGIN material from the previous 3 years (2012-14) (grain and straw) of final harvest grain and straw to give a 5 year dataset on mineral uptake and final partitioning.

The Rothamsted WGIN Diversity experiment (since 2004; now 13th year)

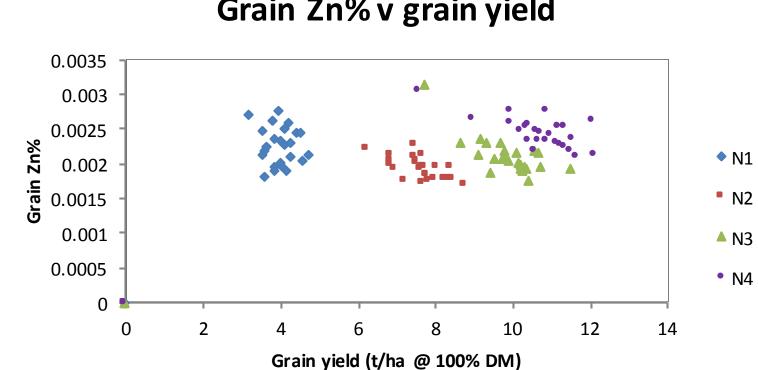



The Rothamsted WGIN Diversity experiment (since 2004; now 13th year)

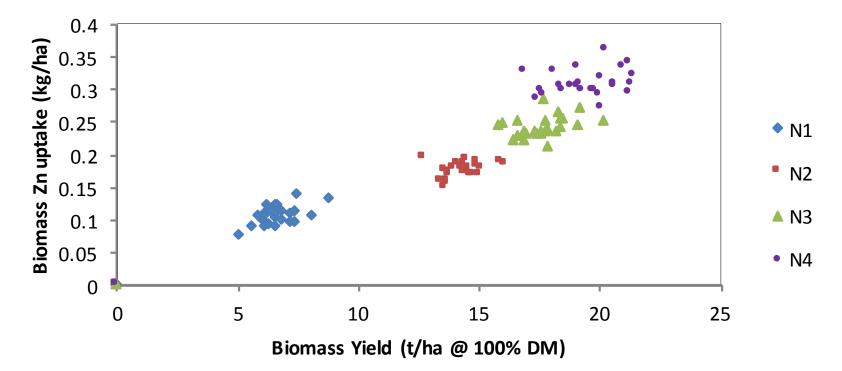
Yield (hence NUE): genetic and year variability



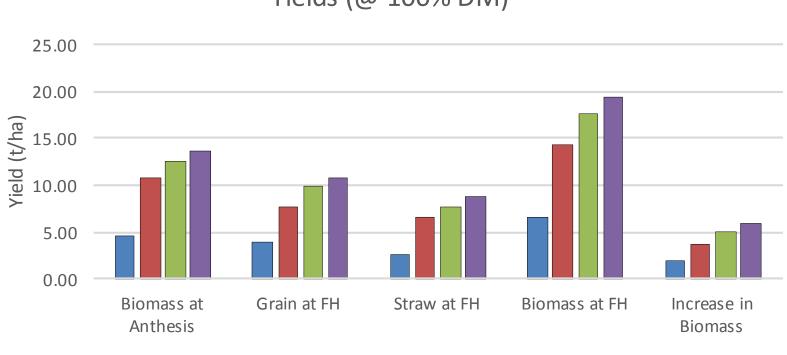
		ICP DATA FOR WIGIN DIVERSITY		
YEAR	FINAL GRAIN	FINAL STRAW	ANTHESIS	NOTES
2012	YES	YES		Archive material
2013	YES	YES		Archive material
2014	YES	YES	some	Archive material
2015	YES	YES	YES	Full data set
2016			YES	In progress


Grain N% v grain yield

Mature grain Zn in WGIN varieties in 2015

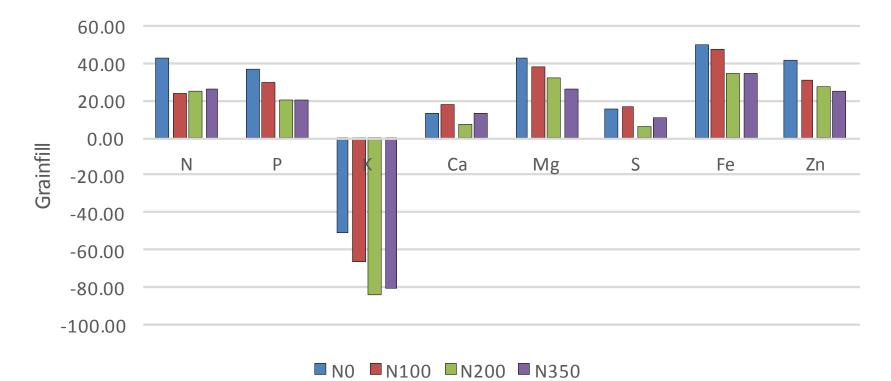

Grain Zn% v grain yield

Total Zn uptake proportional to biomass in WGIN varieties in 2015

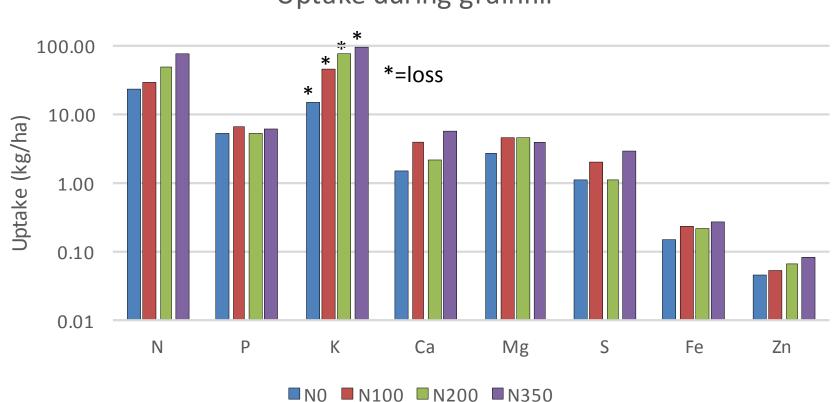


Biomass Zn uptake v biomass yield

Yields (@ 100% DM)



Elemental (total biomass) acquisition after anthesis


Uptake during grainfill as a % of total uptake

Elemental (total biomass) acquisition after anthesis

ROTHAMSTED

Uptake during grainfill

Rothamsted field platform includes mini-WGIN Diversity experiment

Thanks

- WGIN team
- Rothamsted Farm staff
- Andrew Riche, Saroj Parmar, March Castle, Adam Michaelski, Grzegorz Kulczycki
- Gantry: Pouria Sadeghi, Kasra Sabermanesh, Nicolas Virlet

Rothamsted Research where knowledge grows

WGIN 3 Resistance to take-all and foliar diseases

Vanessa McMillan Kim Hammond-Kosack

BBSRC bioscience for the future ROTHAMSTIR

WGIN MM 7th July 2016

Characterisation of hexaploid wheat germplasm previously shown to exhibit a high level of resistance to multiple foliar diseases

Watkins 2008 Field Trial

10 Watkins accessions with a high degree of resistance to all 4 foliar pathogens

Also a high take-all disease year with root infection early in the season

Was the foliar disease resistance an induced plant response?

10 Watkins accessions with high degree of resistance to all 4 foliar pathogens

			20	008 Disease as	sessments	
Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
18	Spring	India	0	0	Т	Т
137	Spring	Australia	Т	Т	0	Т
203	Winter	India	0	0	0	Т
231	Spring	Hungary	0	0	Т	0
262	Spring	Canary Islands	0	0	0	0
399	Spring	China	Т	0	Т	0
495	Spring	Morocco	0	0	Т	0
610	Spring	Yugoslavia	0	0	Т	Т
733	Spring	Iran	Т	Т	Т	Т
786	Spring	USSR	0	Т	Т	0

0 - no disease , T = trace

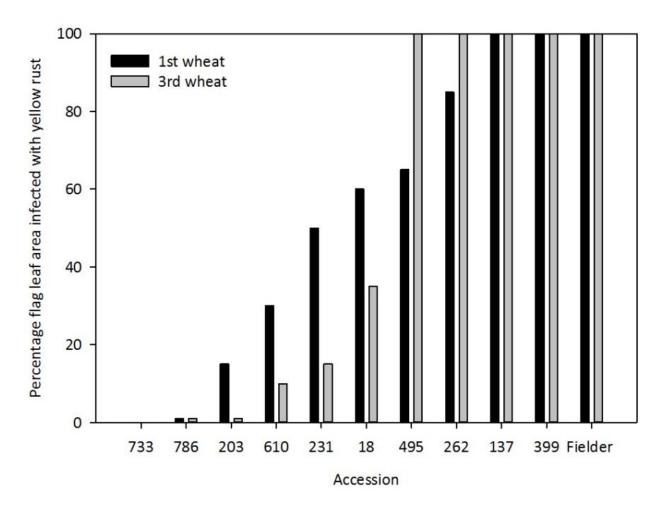
WGIN 3 Watkins foliar disease experiment 2015

- 10 Watkins lines + controls sown in both 1st wheat (no take-all) and 3rd wheat (high take-all) field trials in autumn 2014 (1 or 2 replicates per line in each trial)
- No fungicides applied to allow natural disease to develop
- Score for foliar diseases + take-all

Wheat Genetic Improvement Network

Watkins foliar disease field trial 2015

26th June 2015 1st wheat Long Hoos 4


Yellow rust dominant disease that developed across 2015 field trials

ROTHAMSTED

Evidence of resistance to yellow rust

- Evidence of induced response due to take-all?
- Take-all disease assessments still to be completed

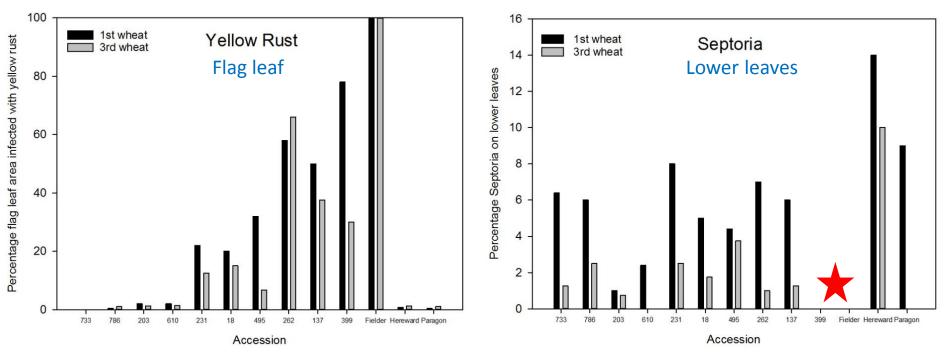
Evidence of resistance to yellow rust

Watkins 203

Low levels of yellow rust sporulation

Watkins 733 No sporulation

Watkins foliar disease trial 2016



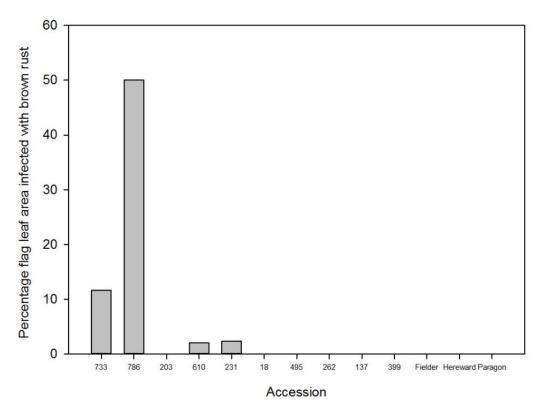
 Repeat field trial with 5 replicates of each genotype sown in autumn 2015 in Long Hoos 5 (1st wheat) and Long Hoos 6/7 (3rd wheat)

6th June 2016 – Yellow rust and Septoria

• Yellow Rust shows similar pattern to 2015

Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections

• All genotypes at GS 57-61, except 610 at GS 47



Wheat

Genetic

Improvement Network

22nd June 2016 – Brown rust developed across the 1st wheat trial site

- Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust do not possess multi disease resistance
- Watkins 203 most promising for showing high levels of resistance against both yellow and brown rust

Wheat Genetic Improvement Network

ROTHAMSTED RESEARCH

Watkins mapping population development

Summer 2015

Field crossing with cv. Fielder

Accession Number	Growth habit	Country of Origin	Ears crossed	F ₁ grains
203	Winter	India	8	31
231	Spring	Hungary	8	54
610	Spring	Yugoslavia	6	33
733	Spring	Iran	6	49
786	Spring	USSR	N/A	N/A

Summer 2016

- F₁ grain sown in glasshouse to generate F2 and for backcrossing to cv.
 Fielder grain soon to be harvested
- Watkins 786 x Fielder crossing carried out in glasshouse grain soon to be harvested
- F₁ grain included in a spring field trial 2016 to study inheritance

F₁ plants – spring field trial

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

Parents		Fielder x 203		
Fielder	203	Plant 1	Plant 2	
100%	2.5%	50%	50%	

Pare	Fielder x 231	
Fielder	231	Plant 1
100%	5%	30%

Parents		Fielder x 610		
Fielder	610	Plant 1	Plant 2	
100%	7.5%	50%	70%	

Pare	ents			Fielder x 73	3	
Fielder	733	Plant 1	Plant 2	Plant 3	Plant 4	Plant 5
100%	0%	0%	trace	0%	0%	0%

Rothamsted Research where knowledge grows

OVERALL SUMMARY

- 2015 trials only yellow rust (6 accessions evidence of moderate to high resistance)
- 2016 trials yellow rust (YR), brown rust, septoria present
- Watkins 203 most promising accession high level of resistance to all three diseases.
- Watkins 733 extreme resistance to YR dominant
- Watkins 203, 231 and 610 reduced susceptibility appears to be recessively inherited.
- UK yellow rust races have undergone at least three complete 'genetic sweeps' since 2008, i.e the older races are no longer present in the current pan UK-European population
- Trend towards less overall disease in 3rd wheat crops evident in both seasons

Many thanks to

Kim Hammond-Kosack Vanessa McMillan Gail Canning

PhD students Sarah-Jane Osborne Joseph Moughan

Undergraduate summer students Erin Baggs Eleanor Leane Tessa Reid

Mike Hammond-Kosack – crossing and introgression Lucy Nevard and Leanne Freeman – seed preparation

Rodger White - statistics

RRes farm and glasshouse staff

Sarah Holdgate (NIAB) Simon Orford (JIC)

Wheat Genetic Improvement Network

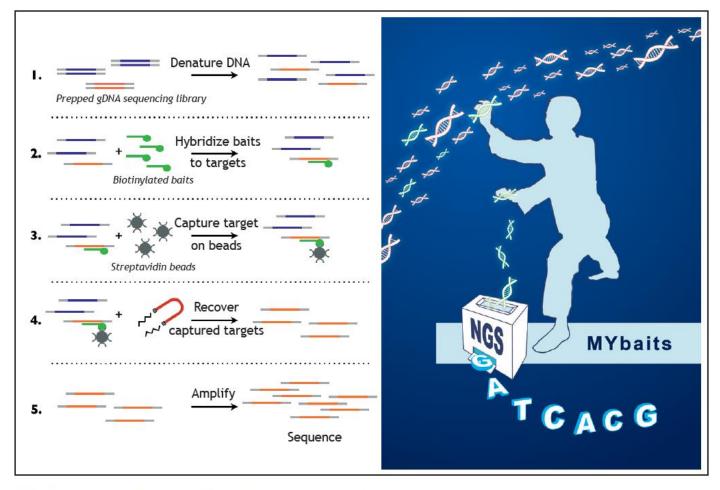
Exome Capture

Kim Hammond-Kosack

Ann Harbor, Michigan, USA

7th July 2016

The overall goal is to use exome capture to identify genetic variation in candidate or known genes that are responsible for the desired trait (s)


Exome capture (WP 4.2, 4.4 and Milestones 18)

A designated group of WGIN scientists will interact with the company MYcroarray to decide on the best way to represent wheat genes on the **20,000 bit array.**

Focus : promoter analysis

Custom bait libraries for target sequencing

Mybaits is a fully customisable liquid-phase DNA capture system for targeted sequencing

High percentage of reads on target.

Focus : promoter sequences (~1kb) – NOVELTY

A, B and D genome sequences to be individually captured

- Bioinformatics will be quite challenging to ID the 3 homoeologous promoters

Design: 120-mers across each promoter, each overlapping by 60 bp (i.e. 2-fold coverage) 16 probes per promoter (960 bp) 48 probes to cover A, B and D promoters / gene 416 x 3 promoters Or some only evaluated for 1 homoeologue Need to include published positive controls to validate the technology

For example - ppd1, vrn1A

Need to remove MITES - miniature inverted-*repeat* transposable elements from the probe sets developed

Developing the list of 96 cultivars – with reasons

Need to relate to ongoing / previous wheat projects (WGIN and beyond)

Generic Resources

Avalon Cadenza Paragon Chinese Spring Kronos (tetraploid) Diploids **Specific traits**

Garcia Watkins 777

Alchemy, Hereward, **Rialto**, Robigus, Savannah and Xi19

- Wingfield et al (2012) PBJ study

Developing the promoter – gene list – 416 x 3 genomes

Traits

- **1. Yield resilience**
- 2. Grain quality
- 3. Biotic stress fungi and insects
- 4. Abiotic stress drought, high temp
- 5. Nutrient use efficiency
- 6. Canopy development
- 7. Flower biology
- 8. Root architecture

50 nominated promoters per trait category

Who to be involved ?

Yield resilience	Cristobal Uauy*, need a 2 nd		
Grain quality	Peter Shewry, Kay Trafford (NIAB),		
	Rowan Mitchell (RRes)		
Biotic stress – fungi and insects	Kim H-K (RRes), Brandt Wulff (JIC),		
	Matthew Moscow (SL), insects ??		
Abiotic stress – drought, high temp	John Foulkes, <mark>need a 2nd</mark>		
Nutrient use efficiency	Malcolm Hawkesford and Nottingham		
Canopy development / whole plant architecture) Simon Griffiths,			

Allison Bentley (NIAB), Andy Phillips* Zoe Wilson, need a 2nd

Root architecture

Flower biology

Malcolm Bennett, need a 2nd

Breeding community - nominations?

* BBSRC BBR wheat tilling project and exome capture

Gene nomination - NEW

- Suggestions directly into an Excel spread sheet
- Gene ID numbers to come from just one source
 ENSEMBL plants
- Need to specific separately the ID numbers for the A, B and D homoeologues – sheet 1

- or could just nominate 1 homoeologue (with reason)

- Larger gene families where homoeologues cannot yet be resolved enter ENSEMBL Gene ID numbers – sheet 2
- Aim to use the 'comments column' for participants to nominate candidate positive controls
 - where transcriptomics data already suggestions one or more copies are silent / over expressed

Exome capture – next steps – summer / autumn 2016

4-6 individuals interested in taking this WP forward

- finalise the oligo design method

- select the wheat gene list

- select the 96 wheat genotypes

Series of Skype calls / WORKSHOP

Interact with the BBSRC funded BBR project which include some exome capture for wheat (Uauy and Phillips)

NimbleGen Set u	Jnited Kingdom Company Careers Contact Us	Roche
Products Service L	earn News NimbleDesign	Search Q
Home > News > Press Releases > 2	2013	
Products Service Learn	Wheat, Barley and Maize Targe Exome Sequencing Available from Roche NimbleG	0,1
News eNewsletter	November 14, 2013	
O Press Releases		
2014	 Roche (SIX: RO, ROG; OTCQX: RHHBY) announced the release wheat, barley and maize genomes. These agriculture exome d 	e of SeqCap EZ Exome Designs for target enrichment of the lesigns were developed with key opinion leaders in crop genome
2013	 research. The goal is to provide researchers a cost-effective ar genome sequencing. 	nd easy-to-use alternative sequencing method beyond whole
2012		with Dasha MisshlaCas to develop both the Wheet and Daview
2011	 The Wheat Barley Exome Consortium (WBEC) worked closely v Exome Designs for public use. The WBEC is a collaboration of 	researchers from the University of Liverpool, Leibniz Institute of
2010	 Plant Genetics and Crop Plant Research (IPK), James Hutton In University of Saskatchewan, and BIOGEMMA. 	nstitute, Kansas State University, University of Minnesota,
2009		
Conferences & Events	 The Maize Exome design resulted from the collaboration betwee and the University of Minnesota. It is based on a comprehens 	een Roche NimbleGen and researchers at Iowa State University ive collection of the exon content from a range of North
NimbleDesign	American lines of maize and maize relatives from the Zea gen	us.
	"Using NimbleGen's target enrichment design in a maize GWA exome, which proved to be a more rapid and cost-effective me methods," said Dr. Patrick Schnable, Distinguished Professor a University.	ethod to identify trait associated loci over traditional detection

WGIN3 project

The overall goal is to exome capture to identify genetic variation in candidate or known genes that are responsible for the desired trait (s)

Exome capture (WP 4.2, 4.4 and Milestones 18)

A designated group of WGIN scientists will interact with the company MYcroarray to decide on the best way to represent wheat genes on the **20,000 bit array**.

This will be done via a series of Skype meetings held during months 1-3.

A workshop will be held to priorities the gene list and the 96 wheat genotypes to be tested.

A pilot experiment will be done to ensure the DNA is of the correct quality to ensure success.

The full sample set will be sent for the capture using the most appropriate secure carrier.

A wheat example from Andy Phillips@RRes

MYcoarray helped design the oligo array for ~1700 wheat genes and made the oligos,

The array "design" was very simple – 120-mers across the whole of each CDS, each overlapping by 60 bp (ie 2-fold coverage). But this naïve design resulted in some variation in capture efficiency.

Used a single set of oligos for each gene, based on a single homoeologue. The ontarget homoeologue represented ~50% of all reads, with the other two homoeologues having ~25% each, on average.

Additional comments

A minimum of 20,000 baits – corresponding to ~1200 coding sequences of average length 1kb.

You will achieve a more comprehensive capture by using genomic sequence not CDS for oligo design (we lost small exons in our captures) so that you can add some flanking intron sequence (and promoter, probably important for surveying natural variation).

Taken a pause - Why ?

- Considerably more Chinese Spring sequencing data to be released into the public domain in Nov 2015
- To be uploaded into ENSEMBL (EBI)
- Transfer annotations from any public source onto this new genome release once a quarter
- EBI contacts are Paul Kersey and Dan Bolser

WGIN Promoter capture experiment

Focus : promoter sequences (~1kb) – NOVELTY

A, B and D genome sequences to be individually captured

- Bioinformatics will be quite challenging to ID the 3 homoeologous promoters

Advantages going forward will be

- Nominators just need to identify the correct locus ID in ENSEMBL wheat and enter this into the Excel sheet and also view the promoter sequence.
- Homoeologous promoter identification should be easier, because of the wheat chromosome maps in ENSEMBL
- The RRes bioinformatician can directly use the ENSEMBL software to pull back the correct 1kb promoter sequences using the locus ID number.

Tools, resources, genotyping and phenotyping

Clare Lister 07/07/16

WGIN3 Projects: Griffiths' Lab

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

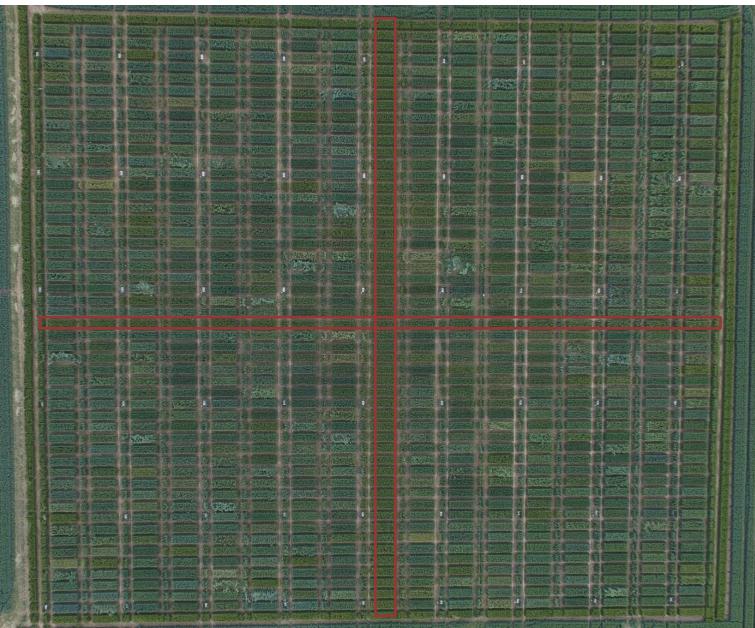
WGIN3 Projects: Griffiths' Lab

1. Dissecting UK drought tolerance in Paragon x Garcia

- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library IN DROUGHT TRIAL AND BELOW PHENOSPEX (CL/JZ)
- 3. Informing multiple marker assisted selection for yield stability using Paragon library (Rht stacking / winter Paragon x Rht's) (SEO/AFM/CL)
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza (AFM)
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK CROSSES FROM RL UNDERWAY (SEO)
- 7. Applying WGIN data to breeding by design for UK yield stability CROSSES & SEED BULKING UNDERWAY (SEO/CL)
- 8. Curation and distribution of WGIN germplasm ONGOING (CL)

Wheat Genetic Improvement 1. UK drought tolerance in Paragon x Garcia

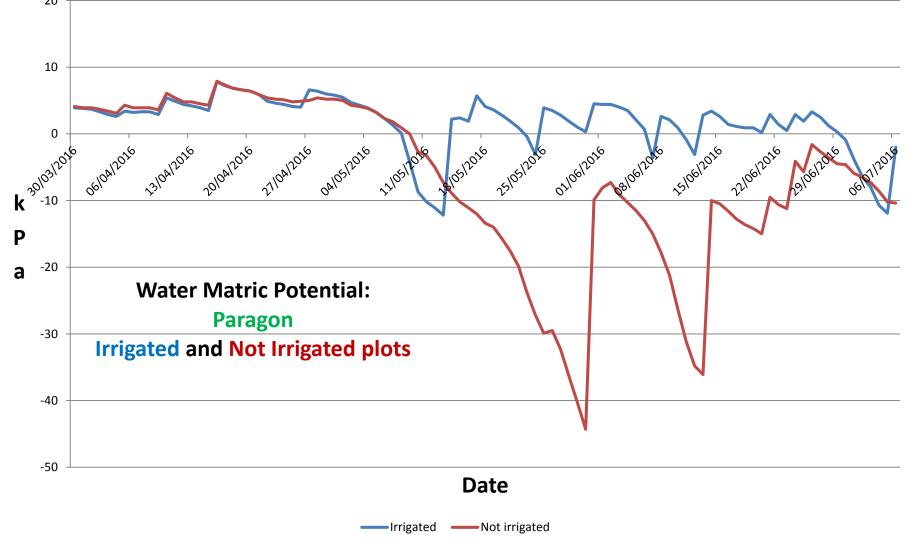
- Measured stage 31 (P x Gar) not yet analysed
- Stem sections around stage 31 1 rep only not yet analysed
- Measured DTEM, Booting and Height + QTL mapping
- Will measure Yield, TGWT and calculate grains/m²
- Monitor/record drought-recovery strategies
- Photos of each plot 1 rep only
- Periodic imaging of plots during growth to track senescence, using UAV


Wheat Genetic Genetic Improvement 1. UK drought tolerance in Paragon x Garcia Network

IRRIGATED

REPS

NOT IRRIGATED REPS


Wheat Improvement 1. UK drought tolerance in Paragon x Garcia **Vetwork**

- To correlate the response of the plants to conditions during the growing season data collected from one **irrigated Paragon** plot and one **Paragon** plot **not irrigated**.
- Measured soil temperature, soil water content and water potential – ongoing from.. Date
- Using monitoring equipment from **DeltaT**
- Weather data for Church Farm plots will also be available
- Collaborating with John Foulkes (Uni Nott.) •
- 2D root screening to characterise variation in key root architectural traits (including root length, angle, and distribution)

Wheat Genetic Improvement 1. UK drought tolerance in Paragon x Garcia

Using irrigation to maintain a water matric potential
 difference between the plots

Improvement 4. A chromosome segment substitution library Network (CSSL) for Avalon x Cadenza

 Genotyping of 94 lines representing the QTLs in the AxC NILs (DTEM, Ht, YLD)

			QTL	# of
Background	Chromosome	Trait	Allele	lines
Avalon	1B	EM	Cadenza	5
Avalon	1D	EM	Cadenza	3
Avalon	2A	Ht	Cadenza	2
Avalon	2D	Ht	Cadenza	5
Avalon	2D	YLD	Cadenza	3
Avalon	3A	Ht	Cadenza	5
Avalon	3B	Ht	Cadenza	5
Avalon	5A	YLD	Cadenza	5
Avalon	6A	Ht	Cadenza	5
Avalon	6B	Ht	Cadenza	5
Avalon	7B	YLD	Cadenza	1
Avalon	7D	YLD	Cadenza	3

Wheat

Background	Chromosome	Trait	QTL Allele	# of lines
Cadenza	1B	EM	Avalon	5
Cadenza	1D	EM	Avalon	5
Cadenza	2A	Ht	Avalon	5
Cadenza	2D	Ht	Avalon	6
Cadenza	3A	Ht	Avalon	6
Cadenza	3B	Ht	Avalon	5
Cadenza	3B	YLD	Avalon	5
Cadenza	6A	Ht	Avalon	5
Cadenza	6B	EM & Ht	Avalon	5

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- NILs being backcrossed to the recurrent parent twice to generate lines where QTL region and random segments have been separated
- Backcrosses to recurrent parents (Winter 15-16)

	Avalon Background	Cadenza Background
Crosses done	23	28
Crosses successful	8	12
Previous crosses (CJM)	7	3

• Backcrosses to recurrent parents (Summer 16)

	Avalon Background	Cadenza Background
Crosses done	38	46
Crosses successful	35	46

• Will genotype BC1 progeny, with parent line, to confirm crosses before proceeding

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- Genotyping carried out on 94 NILs
- (+ Avalon and Cadenza) using Breeders 35K array
- Data still being analysed
- Guestimate of % coverage of background
- (+ foreground) for each chromosome
- Using AxC map positions of markers
- But may need to remap as order not correct
- Will give accurate % coverage

G	GUESSTIMATE!			
Avalon Cadenza				
	43 lines	46 lines		
1A	75%	95%		
1B	90%	70%		
1D	30%	80%		
2A	80%	95%		
2B	80%	80%		
2D	95%	70%		
3A	95%	95%		
3B	80%	95%		
3D	80%	60%?		
4A	70%	70%		
4B	70%?	80%		
4D	80%?	95%		
5A	90%	80%		
5B	80%	75%		
5D	95%	80%		
6A	95%	85%		
6B	95%	95%		
6D	95%	85%		
7A	60%	80%		
7A or 7D	50%?	95%		
7B	40%	85%		
7D	95%	30%		
INCLUDES FOREGROUND				